

#### <sup>225</sup>Ac-DOTATATE (RYZ101) dosimetry results from Part 1 of the ACTION-1 Trial

Michael Morris,<sup>1</sup> **Gary Ulaner**,<sup>2</sup> Taylor Delie,<sup>1</sup> Sandy Kotiah,<sup>3</sup> Denis Ferreira,<sup>4</sup> Kimberly Ma,<sup>4</sup> Jessica Rearden,<sup>4</sup> Joanne Li,<sup>4</sup> Susan Moran,<sup>4</sup> Eileen Sneeden,<sup>4</sup> Bin He,<sup>5</sup> Michael Ghaly,<sup>5</sup> Eric Frey,<sup>6</sup> Aaron Scott,<sup>1</sup> Christopher Huffman,<sup>1</sup> George Sgouros<sup>6</sup>

<sup>1</sup>Advanced Molecular Imaging and Therapy, Glen Burnie, MD; <sup>2</sup>Hoag Family Cancer Institute, Newport Beach, CA;
 <sup>3</sup>Mercy Medical Center, Baltimore, MD; <sup>4</sup>RayzeBio, San Diego, CA; <sup>5</sup>Radiopharmaceutical Imaging and Dosimetry, LLC (Rapid), Baltimore, MD;
 <sup>6</sup>The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD

#### **Disclosures – Gary Ulaner**

- **Consultant:** GE Healthcare, Lantheus, Nuclidium, POINT
- **Research grant (institution):** GE Healthcare, Lantheus, Nuclidium, Curium, RayzeBio, ImmaginAb, BriaCell, POINT
- Speakers' Bureau: GE Healthcare, Lantheus





### Background

 RYZ101 (<sup>225</sup>Ac-DOTATATE) is a first-in-class, alpha-emitting radiopharmaceutical therapy being developed for somatostatin receptor 2-expressing (SSTR2+) solid tumors

- ACTION-1 (NCT05477576) is a Phase 1b/3 trial comparing RYZ101 to standard-of-care therapy in patients with gastro-enteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following <sup>177</sup>Lu-labelled somatostatin analogue (SSA) therapy:<sup>1</sup>
- A first-of-its-kind dosimetry sub-study was conducted in Phase 1b to determine the feasibility of <sup>225</sup>Ac dosimetry with <sup>225</sup>Ac-DOTATATE by imaging <sup>225</sup>Ac daughters





# <u>Key Question</u>: As 225Ac-Dotatate has 4 alpha emissions, are we sure the daughter product emissions are localized in the tumor lesions?



- Upon  $\alpha$  decay, an enormous recoil energy leads to dislocation of the radionuclide from the chelator
- The first two daughters, <sup>221</sup>Fr and <sup>217</sup>At, are assumed to decay where <sup>225</sup>Ac decays, due to short T1/2 (4.8 min and 32 ms)
- The third daughter, <sup>213</sup>Bi, has a half-life of 46.6 min, which may be sufficient for redistribution and off-target decay



#### **ACTION-1 Dosimetry sub-study methods**

| Population                                                                           | Trea                                                                     | atment                                                                   |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Key eligibility criteria                                                             | 225Ac-DOTATATE 120 kBq/kg (3.2 μCi/kg) administered IV Q8W X 4 cycles    |                                                                          |
| <ul> <li>G1–2 GEP-NETs progressed<br/>after <sup>177</sup>Lu-SSA</li> </ul>          | SPECT/CT imaging                                                         |                                                                          |
| <ul> <li>ECOG status 0–2 and adequate<br/>hematologic and renal function.</li> </ul> | <b>Cycle 1</b><br>4 ± 1 hour; 24 ± 2 hours; 168 ± 24 hours post-infusion | <b>Cycle 4</b><br>4 ± 1 hour; 24 ± 2 hours; 168 ± 24 hours post-infusion |







### Results

Cycle 1: SPECT images were acquired in 2 different energy windows 218.2 keV (±20%) to localize <sup>221</sup>Fr & 440 keV (±20%), and to localize <sup>213</sup>Bi



Results: <sup>221</sup>Fr & <sup>213</sup>Bi stay within tumor. Minor fraction of free <sup>213</sup>Bi goes to kidneys.





### Results

Cycle 4: SPECT images were acquired in 2 different energy windows 218.2 keV (±20%) to localize <sup>221</sup>Fr & 440 keV (±20%), and to localize <sup>213</sup>Bi



Compared to cycle 1, there is a decrease in tumor uptake and increase in kidney uptake.





## Cycle 1 time-integrated activity coefficients (TIAC)



|                              | Mean (SD) TIAC, MBq-hr/MBq (hr) |                   |
|------------------------------|---------------------------------|-------------------|
| Source organs<br>and lesions | <sup>221</sup> Fr               | <sup>213</sup> Bi |
| Kidneys                      | 2.10 (1.05)                     | 3.76 (1.00)       |
| Liver                        | 11.70 (6.65)                    | 13.50 (5.82)      |
| Red bone<br>marrow           | 0.67 (0.55)                     | 1.11 (0.59)       |
| Spleen                       | 2.55 (1.33)                     | 2.14 (1.12)       |
| Lesions 1–5                  | 2.64 (3.98)                     | 2.02 (3.47)       |

TIAC for <sup>221</sup>Fr and <sup>213</sup>Bi confirm <sup>213</sup>Bi stays with the delivery agent, with a minor fraction of free <sup>213</sup>Bi going to kidneys





#### Total estimated absorbed dose of RYZ101 for full treatment course

- The recommended  $^{225}$ Ac-DOTATATE dose for phase 3 of ACTION-1 is 10.2 MBq (275  $\mu$ Ci) x 4 cycles
- Assuming a similar dose distribution for each cycle, the total estimated absorbed dose for 4 cycles (40.8 MBq [1100 μCi]) is:

| Organ           | Total estimated absorbed dose<br>across 4 cycles<br>Mean, Gy |
|-----------------|--------------------------------------------------------------|
| Tumors          | 117                                                          |
| Kidneys         | 22.3                                                         |
| Liver           | 17.7                                                         |
| Red bone marrow | 1.1                                                          |
| Spleen          | 35.6                                                         |





### Conclusions

This is the first data on <sup>225</sup>Ac dosimetry in humans based on direct imaging of <sup>225</sup>Ac daughters. <sup>221</sup>Fr and <sup>213</sup>Bi can be imaged separately and simultaneously by SPECT/CT.

• This is the first demonstration that the daughter products of <sup>225</sup>Ac stay with the delivery agent, proving multiple  $\alpha$  emissions occur within the tumor for therapy.

• ACTION-1 dosimetry data suggest a favorable tumor-to-background profile, supportive of RYZ101 for treatment of SSTR+ GEP-NETs



### Acknowledgements

- The authors would like to thank all patients and their caregivers for participating in this study
- The authors would also like to thank all site investigators and study staff who participated in the dosimetry sub-study
- RAPID conducted the <sup>225</sup>Ac dosimetry analysis
- <sup>225</sup>Ac was supplied by the U.S. Department of Energy Isotope Program, managed by the Office of Isotope R&D and Production
- The ACTION-1 study is sponsored by RayzeBio Inc., San Diego, CA, USA. The study sponsor also funded medical writing and layout support for this presentation, which was provided by Miller Medical Communications Ltd.





# Thank you!



